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SUMMARY

This analysis is aimed at the near-wall processes in an
injected, axisymmetric, viscous flow. It is a part of an overall
study of solid propellant rocket instability, in which cold flow
simulation is evaluated as a tool to elucidate possible
instability-drivinq mechanisms. One such prominent mechanism
seems to be visco-acoustic couplinq, as indicated by earlier
detailed order of magnitude analysis. The major component of the
overall study involves numerical simulation of the full set of
coreflow equations of motion (nonsteady, axisymmetric) by a
modified MacCormack integration techniaue. To clarify some of
the physical interactions inherent in the various regimes of the
flowfield, two (separate) singular perturbation analyses have
been carried out. The head-end boundary regime, and the injected
sidewall layer, both involve appreciable viscous dissipation, and
hence are characterized by predominantly parabolic differential
systems. The inverse square root of the injection Reynolds
number serves as a small-perturbation quantity. The sidewall
layer analysis yields a first order axial pressure distribution
(due to viscous effects) which correlates the available steady
state data (CSD experiments, 1982) very well. The radial
dependence of the inner variables up to first order is solved, so
that the (x,t) dependence can be described by much simpler
partial differential systems; inner/outer matching was not
attempted. The finite-difference coreflow algorithm is
described, and a source listing from one preliminary version
(ROSCO-2) is provided. Convergence to steady state has been
achieved with this program recently (by marching forward in time
from imposed initial data). The modular structure of the
computer program facilitates addition of special segments (such
as two-equation turbulence modelinq).
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1. BACKGROUND

This is part of a study aimed at elucidation of the physical
mechanisms capable of driving acoustic instability in solid
propellant motors, particuarly of the type termed velocity-
coupled instability. Previous studies on the coupling between
velocity oscillations and the combustion process in solid
propellant motors have demonstrated the complexity of the overall
phenomenon, but have not yet defined the basic mechanisms nor how
they operate under flow conditions prevailing in rocket chambers.
Critical literature review and order of magnitude analyses of
velocity coupling mechanisms have been carried out, includinq
visco-acoustic coupling and turbulence combustion coupling. The
major goal of the study is the analytical simulation of the
interior flow field within a solid propellant grain. The focus
is on the Stokes layer, with the objective of investigating the
particular instability mechanism of visco-acoustic coupling.
Preliminary analysis has indicated that this mechanism is both
plausible and sufficiently powerful to drive nonlinear
vibrations; it has been shown that the frequency-dependent
surface heat feedback component, due to viscous/acoustic
couplinq, has both phase amplitude ranqes which would enable
driving of acoustic vibrations; its amplitude tends to increase
as the mean coreflow Mach number and the frequency become higher.
A comprehensive analytical model of the flow field within the
viscous wall layer region has been derived, for an axisymmetric,
nonsteady flow field configuration. For a simulation of the cold
flow test results gnerated at UTC/CSD, four conservation
equations are incorporated for continuity, momentum and energy.

The major aspect of the near-wall behavior from the visco-
acoustic point of view, is the laminar dissipative processes
typical to that region. This analysis is focused on the near-
wall processes. Although the solultions derived are nonsteady in
general, the radial wall-layer distributions obtained could best
be demonstrated at steady state. For this reason, the review
herein is limited to steady behavior.

Culick [I] derived a solution to the Stokes stream function
equation or flow in a pipe with injected sidewalls. The flow is
rotational, and despite being inviscid, could obtain a solution
for the axial velocity component which satisfied the no-slip
boundary condition at the wall. The solution which satisfies the
boundary data, namely, u(x=O)=O, u(r-l)=O, and v(r=l)=l, yields:

sfM 7 a- TrX ceC r )

Of the general family of solutions obtainable, only that which
allows full determination of the vorticity (the azymuthal
component alone remains) by the available boundary data, isphysically meaningful; the rest were therefore rejected. The
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axial pressure distribution obtained from the momentum equation
is parabolic,

This type of injected flow field has been investigated previously
both experimentally and theoretically. In particular the early
theoretical work of Berman [2], who arrived at a power-series
solution to the perturbation problem of suction in a prismatic,
porous-walled channel, with the suction Reynolds number serving
as small-perturbation quantity. The analytical results of G.
Taylor [3] and Wageman and Guevara (4] more closely resemble the
cosine terms of Culick (1]; both [3,4] have carried out
experiments as well, and both demonstrated very good agreement
between the measured axial velocity profiles and the calculated
ones. It appears that Culick [11] has arrived at his results
independently, since no reference was made to any of the previous
works. In the experiments by Dunlap, Willoughby and Hermsen [5],
the formulation derived by Culick [11] was used to correlate the
measured data, again with considerable success, regarding the
coreflow axial velocity profile, that is, away from the close
neighborhood of the wall.

Other experiments by Olson and Eckert 16] and later by
Huesman and Eckert [7] tend likewise to verify the validity of
this formulation, in particular regarding the radial velocity
profile, which indeed exhibits a peak near the porous surface
[6], as well as the axial pressure distribution (the latter shown
as a linear correltaion between the friction coefficient, Cf, and
the inverse mean axial velocity, which are both proportional to
i/x.

The recent (and ongoing) experimental study by Brown, et al
[8] provides valuable information regarding the steady state
axial pressure profile and the axial velocity distribution, as
well as nonsteady wall heat transfer (obtained by exciting the
standing acoustic modes in the tube). Departure of the steady
state data from the predictions of the aforementioned formulation
by Culick (11 was attributed to possible transition to
turbulence. As will be shown in this study, the pressure data
obtained can be simulated very well with a first-order pressure
perturbation, arising from the laminar viscous wall-layer
analysis.

Earlier, Yagodkin [9] reported an experimental cold flow
setup, with an injected porous pipe. The maximal injection
Reynolds number was 250, which is 2-3 orders of magnitude less
than that corresponding to actual internal rocket flows. Hot-
wire anemometry was used to obtain axial velocity and axial
velocity fluctuation vs axial and radial distance. Turbulence
intensity seems to peak near the surface, and decrease toward the
centerline and toward the pipe wall. These observations are
qualitatively similar to those obtained later by Yamada, et al
[10]. Although a transition region, at Reo=100-150, was
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sneculated [9] to involve "large eddy structures", no such
evidence appears in the experimental data reported [9].

* Further studies by Yaqodkin, with Varapaev [11] and
Sviridenkov (12] are theoretical, and address the problem of
laminar stability of injected channel flows, i.e., transition to
turbulence. Thus, modified versions of the Orr-Sommerfield
problem were investigated analytically 111] and numerically [12].
Two related laminar flow stability analyses are by Goldshtik, et
al [131 and Alekseev, et al [14]. None of these theoretical
analyses indicates the presence of large turbulent eddy
structures prior to a full transition point, neither do they
obtain an origin of such turbulence on the centerline upstream.

Recently Flandro [15] has carried out a theoretical analysis
for a burning propellant in a cylindrical grain, under the effect
of incident acoustic waves. A detailed formulation was derived
with a double expansion, in terms of both inverse Reynolds number
as well as Mach number (independent small parameters). A
nonsteady premixed combustion zone was considered near the
propellant surface; the assumption is made, however, that flow
within the combustion zone is pure radial, i.e., zero axial
component to all orders. Thus it could be anticipated that the
results resemble (regarding nonsteady combustion behavior) those
of Tien [161, and there seems to be only small differences
between the response to tangent and to perpendicular wave
incedence. The problem is finally solved numerically, and
details of the inner/outer matching process were not given.
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2. ANALYTICAL MODEL OF THE COREFLOW

2.0 INTRODUCTION

In this chapter, the equations of motion pertaining to the
core-flow simulation are presented, for an axisymmetric flow
field. Turbulence and combustion are precluded from the present
formulation, for reasons discussed earlier. Other than these
simplifications, the full compressible, nonsteady, viscous
equations of motion are considered, with all the dissipative
terms included. A schematic of the simulated flowfield with the
various reaions of interest is shown in Fiqure 1.

Treatment is divided into three subsections, in which the
coreflow region, the head-end closure region, and the porous,
injection sidewall region, are discussed in detail. The latter
two parts represent singular perturbation analyses of the
boundary-layer type, which are incorporated for generation of
boundary data within the coreflow solution procedure. Important
physical insiqhts are obtained regarding the behavior of the
system at relatively large injection Reynolds numbers, coupled
with low injected Mach numbers, such that

Mo2 _ O(l/Reo)

The numerical algorithm developed for solution of the
coreflow differential system is a modified MacCormack scheme.
Its finite differencing details 4re discussed in the next
chapter, along with a current listing of the Fortran code.
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2.1 THE COREFLOW FORMULATION

The objective is to simulate the cold-flow experiments of
Dr. Brown at UTC/CSD, which utilize cylindrical geometry. For
this purpose, an axisymmetric formulation was derived, to
describe a nonsteady, compressible, viscous flowfield. For the
coreflow region, with typical injection Reynolds numbers of order
1000 and larger, we assumed constant and uniform thermophysical
properties. As mentioned earlier, combustion (or chemical
change) and turbulence are precluded at the present stage.

The five equations of motion, for continuity, radial
momentum, axial momentum and energy are presented in differential
form. A caloric eouation of state (pertaining to perfect gas)
completes the model to form closure of the dependent variables.

The following dimensionless independent variables are
introduced, based on the two physical scales of reference,
inner chamber radius, Ro*, and reference injection velocity,

r = r*/Ro*, x = x*/Ro*, t = t*/to* (2.1)

where to* = Ro*/Vo* (2.2)

The dependent variables are:

)* To v = v*/vo*, u = u*/vo*, ho = h*/ho*

and p = P*/Po* (2.3)

In the last equations, the properties used for non-
dimensionalization are the reference (injected) density, 9, and
the reference chamber pressure, po*; the corresponding thermal
enthalpy, ho*, is calculated from the caloric equation of state,

F- 6\o (2.4)
where -1=Cp/Cv is the specific heat ratio, is considered as

constant. The reference speed of sound is

The corresponding injection Mach number is

M_ v0*/a0* (2.6)
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The reference (injection) Reynolds number and Prandtl number are,
respectively,

R~eo =~v.*/u (2.7)

(2.8)

Recall that the viscosity, thermal conductivity and isobaric
specific heat are all uniform and constant within the present
cold-flow simulation. These idealizations are incorporated
merely for convenience, in allowing clear identification of
physical interactions within the coreflow, at low (axial) Mach
numbers; sharp pressure and temperature variation are obviously
precluded. These simplifying assumptions are in no way essential
to the solution; variable viscosity, thermal conductivity, etc.,
can be radily incorporated in the numerical solution alqorithm.

The dimensionless equations of motion are as follows, for the
reqion

0 <x < , 0 < r < 1, t > 0:

CONTINUITY:

+ V) =0(2.9)
A MOENUM

RADIAL MOMENTUM:

AXIAL MOMENTUM:

) 3 (2.11)

THERMAL ENTHALPY:

-( 1



-- .

where the right-hand side (source) terms are defined:

(2.13)

-- +_ --?.JY 3 "roj (2.14)

(2.15)

The parameters, , Pr, Mo2, Reo are all constants.

The differential system for the coreflow can be written 1
in short notation,

ZJ A - (2.16)

where Uk is the non-primitive dependent variable vector, with the
components defined:"

~while the flux terms Fk(U), Gk(U) depend only upon the vector U
(when , Mo are considered as constant parameters:

0 e

S(2.18)
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G4 (2.19)

Note that incorporation of the pressure gradient within the S2
source term in the radial momentum equation, while the axial
pressure gradient is included within the axial flux comonent, G3,
is merely for convenience in the solution process. In the
meantime, the viscous and thermal dissipative terms, 0(l/Reo),
are expected to be very small over most of the coreflow domain,
excluding the neighborhood of the walls.

The Boundary Conditions: The following physical boundary data
are available, for the cold-flow simulation:

(a) On the centerline, (t, r=0, x):

v= 5'=a r /_0 (2.20)

(b) At the porous (injected) surface, (t, r=l, x):

v = -Vo(Xt), u=0, h - ho(x,t) (2.21)

(c) At the (nonpermeable solid) head-end closure, (t, r, x=O):

v = 0, u = 0, h = hH(r,t) (2.22)

The functions vo(x,t), h (x,t) and hH(r,t) are arbitrary imposed
(generally variable) distributions.

(d) The exit plane, defined by (t, r, x=L), forms an entrance
into a short, convergent nozzle section. This nozzle section is
treated separately from the rest of the flow field; several
assumptions are incorporated, as follows:

(d.l) The throat, At(t), is variable but remains
sonic at all times.

(d.2) The convergent section is short, and introduces no
dynamic effect; it responds instantly to any changes,
and is considered (in this sense) quasi steady.

(d.3) The sonic surface at the throat is reasonably
approximated by a plane encompassing the entire
(circular) throat area. In other words, within each
computational cell, the flow can be considered quasi
one-dimensional.

The last assumption is used to facilitate calculation of
. the implicit functional relationship

f( (u/a)2 , At/A, ... ] = 0 (2.23)
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within each computational cell in the discretized flowfield within
the nozzle.

The foregoing discussion has summarized the corelflow
analytical model, including the equations of motion and the
relevant boundary data.

Simulation of the nonsteady flow field, which arises due
to perturbation of the exit nozzle can be performed, with the
initial data corresponding to steady state. As mentioned
earlier, solutions are generated numerically, by a finite-
difference algorithm. Prior to the description of the numerical
algorithm, two special regions in the flow are discussed in
detail: the head-end and the sidewall layer, which appear in the
following two sections.



2.2 TEE HEAD-END CLOSURE LAYER

A solid, planar head-end closure is considered at x-0, as
shown in Fig. 2. The flow in this region is radially injected
inward (from the porous cylindrical wall), then, near the
centerline, tends to turn toward the axial direction.

A boundary layer is formed near x=O, to connect the regular
flow regime (with apperciable radial and axial motions), with the
end-wall where no-slip conditions prevail, viz., v=u=O. Within
this layer viscous forces are of importance. The dimensionless
parameter

0 < E i/ (Reo << 1 (2.24)

can serve as a proper small perturbation quantity. The layer
axial coordinate is therefore stretched,

Y- x/ (2.25)

Thus, the independent variable system is transformed from (x, r,
t) to (yl, r, t) in the layer. Further, the dependent variables
are now perturbed, as

.,J'+4-e::j ) V 0 !-"L % ) EU(2.26)

where the dependent variables are

vo(yl,r,t), v (y1lr,t), ul(yl,r,t) ... etc., all assumed to be of
order unity r convenience, the following abbreviated
definitions are introduced:

F= V. ) FoV,+, -oV,0  (2.27)

The transformed axial derivatives are now,

3L6K (2.28)

while the (r,t) variations remain equal to their counterparts in
the original equations of motion.

In the remainder of this section we will derive the
perturbed system of equations of motion for the layer, and
collect hierarchies of equal power of S. -

Obviously, the injection Mach number appears as an
additional parameter in the formulation (equations of momentum
and energy). In the flow fields of interest for simulation
herein, M is also very small; in consideration of typical

*t experiments at CSD/UTC with air injection, we find
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Mo 2 0 (l/Reo) a2  (2.29)

which adequately represents a range of cold-flow conditions.
This offers great simplification in the analysis, although at the
cost of narrower ranqe of general application (considerina the
relative freedom of the two major flow parameters, Reo and Mo).

Therefore a parameter is introduced,

" = = q& (2.30)

according to the foregoing considerations.

*The question of timescale is not trivial, since it depends
upon the range of frequencies of interest. The following
reasoning will demonstrate that for the range of conditions
considered for the present simulation, the timescale can remain
the same one as in the coreflow. The viscous layer thickness is

v - /V-e (2.31)

where Reo = VoRo/)' (2.32)

The Stokes Layer thickness (for acoustic perturbations with a
frequency fo)

85STO - 0/ (2.33)

The ratio of these two thickness scales is,

-J (2.34)

where S is the relevant (injection) Strouhal number. The range
of Strouhal numbers considered is SRO - 0(1), so one need not
introduce any additional timescales.

The continuity equation becomes, after using the perturbed
variables, Eqs. (2.26)-(2.28):

OS (2.35)
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From which the following hierarchy is collected:

ORDER 1/ e :

D /1  =0 (2.36)

Go =G o (r,t) (2.37)

ORDER &o (ZEROTH):

(2.38)

ORDER i (FIRST):

r-

(2.39)

Similarly, the radial momentum equation yields

[EF-,- ,] + F.,v-, (P,,o,, -v.,-.-F. V)

v, F,,", R,

(2.40)

The following hierarchy evolves:

ORDER 1/ E,2:

paP r" =(2.41)
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ORDER l/ 6:

R.u,)/ , 4K../ iY 0 (2.42)

ORDER 60 (ZEROTH)_:

-V-..Vr (2.43)

ORDER 6 1 (FIRST):

- + ?,(v.,v . .Ro v r

3 ,(2.44)

The axial momentum yields, after similar treatment:

ORDER 1/ e 3 : ? -'-J = (2.45)

ORDER 1/ E. 2 : = (2.46)

ORDER l// :t , 0 (2.47)

Thus, in view of Eq. (2.37):

U0 = U. (r,t) (2.48)

ORDER F0 ZEROTH:

(2.49)

ORDER 6,1.(FIRST):

l U (2.50(u) &,)= -
U ~ o(2.50)

i*
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At this point, the lower-order anlaysis results can be
summarized:

/ o - t~r =o)

where: 4, (2.51)

-a 6 O =0  0

Based on the foregoing, along with the boundary data:

u o (Yl=O,r,t) = 0 (2.52)

the natural choice of solution for uO is the trivial one,

uo (yl,r,t) = 0 (2.53)

Thus, Go(yl, r, t) = 0. Further, from Eq. (2.42),

P 0 (2.54)

which therefore le ves only time-dependent pressure within the
layer, up to O( l ) :

g (Lt) , (2.55)

which implies also, for :

With the foregoing results incorporated, the enerqy equation
becomes much simpler to handle; the following hierarchy is
obtained:

ORDER 60 (ZEROTH):

, (2.57)7" 7- r ," "-r (' 2.57)



-16-

Note that the specific enthalpy, ho, and the density may vary
with both yl and r, despite 4 =4oLt).

ORDER 81 (FIRST) :

-, -A# . (258
To lowest order in the perturbation quantity, S, one may

collect the following differential system, written in convection
form.

*-(2.59)

9iZVo

' 1 1,(2.60)

Rv ?W L3 ? (2.61)

Note that G1 = oU1 here. With vo(t) imposed externally, (as
expected), Ehis-system forms a closure for go, ho, V and Ul"
The only parameter appearing explicitly is the Prandtl number,
which is of order unity.

The associated boundary data are as follows. At yl=0, the
head-end plane:

vO (0,r,t) - u1 (0,r,t) = 0 (2.63)

ho (0,r,t) = Hw (r,t) (2.64)

where Hw is an arbitrary function. Note that

S?(0 ret)- Lt/wr)0 (2.65)

L- which follows from the equation of state, with Po(t) impressed
upon the layer by the outer - flow field. Now in the radial
direction, the boundary data are as follows. At the injected

I-1
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porous wall, r=l:

vo(y,l,t) =-Vw (2.66)

ul (Yl,l,t) = 0 (2.67)

ho (yl,l,t) - Hw(t) (2.68)

On the centerline, r=0:

vo(ylOt) = 0 (2.69)

Ul/ r (y,,0,t) - 0 (2.70)

-ah o / r (y,,0,t) = 0 (2.71)

Evidently, the second-order derivatives in Eqs. (2.60) through
(2.62) are in the axial direction (y]), so that the velocities
and thermal enthalphy must match their outer-field counterparts
at an intermediate region of common validity.

In summary, the two important results of lower-order
analysis herein are as follows.

(1) Pressure is uniform within the layer up to O( F. 2 ) - at
least, i.e.,

Po = P0 (t), Pl = pl(t)

which can be expected, in view of the thin layer assumption
as well as the low velocities.

(2) The axial velocity is small and of order , namely,

uo(vl,r,t) = 0

while u, * 0 in general.

The zeroth-order differential system, Eqs. (2.59)-(2.62),
with the boundary data, Eqs. (2.63)-(2.71), form a closure.
Obviously, the pressure p (t) is impressed upon the layer
externally. Also, externaft boundary data is required for solution
for the two momentum equations and the enthalpy equation, as
expected; this would enter through inner-outer matching. The
actual method of solution will not be discussed herein.

" - .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . | . . . . . . .
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2.3 THE INJECTED SIDEWALL LAYER

2.3.0 THE SINGULAR PERTURBATION SYSTEM

A porous, injected cylindrical pipe is considered, as shown
in Fig. 3. The flow region of interset is close to the surface,
where viscous forces are expected to be appreciable within a thin
layer.

For the neighborhood of r=l, the following transform is
proposed for the radial coordinate:

y = (l-r)/E (2.72)

which magnifies the wall layer, with

0 < -1/ VReo << 1 (2.73)

as defined earlier, in Eq. (2.24). Thus,

I( (2.74a)

- (2.74b)

and r =1- y (2.75)

Again the assumption for small injection Mach number is
constrained by:

-j '_AA0  (2.76)

in aqreement with the available experimental data.

The independent variables are (x,y,t), while the associated
dependent variables, in the wall-layer, are perturbed,

4-EV=V0 _6V1  tA .0+ s4,
r)

k -o (2.77)

the following abbreviations are introduced,

F~=U,0  Vo V.~U 4 (2.78)

L
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These are not to be confused with their head-end counterparts;
although the notation is the same, the functional dependences are
quite different, obviously.

For reasons explained fully in the head-end wall laver
analysis, no further timescales or (axial) lenqth scales need to
be introduced.

2.3.1 DEPRIVATION

For the perturbation variables of Eqs. (2.72)-(2.78), the
continuity equation is:

(2.79)

The followinq hierarchy is collected:

ORDER lI/

(2.80)F. = (x~t)
(2.81)

ORDER Eo (ZEROTH)

Dr 7(2.82)

ORDER _ 1 (FIRST)

The radial momentum balance becomes:

7W FV F(RV -EV

"D Fo .o E.F ,,v) F_7(.CVvV
0 . . . . . . ~ . . . . . . . ,= - ..
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(+ ev,
4--

3 (2.84)

The hierarchy obtained is:

ORDER 1/ g3:

-- o/ j - O (2.85)

Thus,

ORDER 1/ 62:

-, -",= , ) ('2.86)

ORDER 1/ & :

- Z'F. v (2.87)

ORDER Eo (ZEROTH):

Fo E7 F oV, - vV.) ,Vo

(2.88)

ORDER El (FIRST):

N,(vo )t (2.89)

b3
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The axial momentum balance is:

The associated hierarchy is:

5; ~ . ' = o S'
ORDE 1/- EE

(2.91)

hence, . . = P- Lt) (2.92)

ORDER 1/ ,:

KM I O.) (2.93)

where we used F u = GoVo . This equation is of great importance,

as will be shown fater.

ORDER E0 (ZEROTH):

(2. 94)

ORDER 1 (FIRST):

-C U f- G. U, ) - RC&=,Vt~oi

(2.95)
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After similar substitution, the enthalpy equation in the
wall layer yields the following hierarchy, for

0 9(2.96)

ORDER l/-

--1O V0  (2.97)

Note that on the left hand side, according to Eqs. (2.80), (2.87)

-0. /dY =0
(since Fo- 0 in general). Now, according to Eq. (2.92), po =
po(t), so that both sides are identically zero, as

Therefore, Eq. (2.97) does not yield any new information.

ORDER 0o (ZEROTH)

(2.98)

ORDER 6 1 (FIRST)

| (2.99)

This concludes the derivation of the perturbed equations of motion.

C|~ Ck t 704_oo -V V

. . . . . . . . . . I .. . I II I I I . . . . I I I - - . . . . ..a x 1
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2.3.2 ANALYSIS-SIDEWALL LAYER

*The results of lower-order analysis can be summarized as
follows. From Eq. (2.81),

*while from Eq. (2.87), using the last equation,

vo = vo (x,t) (2.100)

Thus o' v 0 and F are all independent of y. Further, from Eqs.
(2.85) and (2.91) clearly

while from Eq. (2.86),

Pl = P (x,t); (2.101)

so that both lo and a, are independent of y, but po(t) is uniform
within the entire chamber, as expected. As a consequence of Eq.
(2.101),

C1 1 -t-fho =4 , C ,t) (2.102)
One may now proceed to solve Eq. (2.93) directly for u

=0

0 OP

(2.103)

with the boundary condition, (no-slip):

uo (x,0,t) = 0 (2.104)

Of course, the (x,t) dependence of u0 still remains to be found.
However, its dependence upon the layer coordinate, y, is found
to be linear; this result is certainly not obvious, and has
several important implications.

The shear stress within the layer,

0 Z(;~ 144(2.105)
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is obviously nonzero in general, while the associated azymuthal
vorticity within the layer is independent of distance from the
wall at any given station (x,t). Even more striking is the
vanishing of the viscous dissipation term at zeroth order:

---- O(2.106)

which leaves in the zeroth-order axial momentum equation a
balance of inertial terms, strictly, ct. Eq. (2.94). This
explains ohysically the success (up to first order) of modeling
this family of injected flows by assuming rotational, inviscid
motions; such modeling indeed obtains solutions for the axial
velocity profile, which satisfy the no-slip condition at the wall
(r=l).

It further appears that the shear stress, Eq. (2.105), is
proportional to the first-order axial pressure gradient, while
being inversely pronortional to the injected mass flux, as would
be expected. Of course, -aP/DX depends on Fo, and one expects
their ratio to be finite at the limit as zero injection is
approached.

In addition to the foregoing result for axial velocity,
the zeroth order formulation can be utilized to solve for the
y-dependence of the other eependent variables. The continuity
equation can be written now as

From Eqs. (2.81) and (2.100) we know that Fo and Fo are
independent of y. Hence, one may split the foregoing equation,

~f/a±F 0(.,- CoCxK-t) (2.107)

Vo - -o
' (X,t) (2.108)

where C (x,t) is a common separation parmeter, with a range of
values ?ully determined by the boundary data.

The second equation yields

F1 (y,x,t) = B0(x,t) + Co(x,t).y +_ y2/ 2  (2.109)

where:

Bo(x,t) = Fl(0,x,t) (2.110)

q 0 (X,t) (2.111)

~V
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Similarly, the zeroth order radial momentum equation is split:

ZFE./ - Vo4 C,(X,)) (2.112)

KOK 69 1(2.113)

The last equation can be integrated,

f F0 x D3(

= v, (0)xt)
(2.114)

The foregoinq results for F, and v, yield for the first-
order density:

+±(2cCYv>+ ' 1
-J 'V) V0  ~ ((2.115)

Note that: 3 1 (O,x,t) = (Bo - ?oB1)Vo

so that I, is uniquely defined and an additional integration
constant is not necessary. Also, according to Eqs. (2.107) and
(2.112),

(2.116)

Now, since :, and we already found that

then:

h l (y,x,t) = -x,t) + B 2 (x,t) (2.117)

__ Thus, hl(y,x,t) is second order in y, like the appropriate
boundary condition is,
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B2 (xt) = hl(O,x,t) - ho(B o - '0 B1 )/F o  (2.118)

For the axial momentum, after dividing through by Fouo, Eq.
(2.94) leads to:

a +
+ "V, Fo 2, = O a

0. -l(2.119)

Now, according to the foregoing results:,R+ -ato (2.120a)
=G

- (2.120h)

Substitution into Eq. (2.119) yields, after some
manipulation:

md~o

(LN- o Be) -S.o/Fa
(2.121)

where

F(X (2.122)

thus,

_ C t- 7 d/F (2.123)

and

uj(O,x,t) = 0

satisfying the no-slip condition at the wall. Thus, the
perturbed axial velocity is third order in its y-devendence, and



-27-

the corresponding viscous dissipation term (unlike its zeroth-
order counterpart), does not vanish.

The zeroth order energy equation can now be written as

-- MQ (b4:. (2.124)

Now

a n d - v Oc O + U a A V O .

Hence, the right-hand side of Eq. (2.124) becomes, after
substitution,

Fo (2.125)

Now the left hand side of Eq. (124) depends only on t; it
therefore remains that the term in square brackets formally
vanish. Thus,

U~/V C4 Ct Va O (2.126)

One may turn now to the first-order enerqy equation, which seems
to yield some simple and highly useful rseults even without full
solution. Equation (2.99), written in terms of pressure, reads:

Pv OVUI(V. +POV2

(2.127)
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After some manipulation one obtains:

~ -o (2.128)

The first bracketed term, after using Eas. (2.125) and (2.126),
is simply

vo - (Cl-voCo)/F o

The enthalpy term, according to Eas. (2.115) and (2.117) is:

(2.129)

The axial velocity qradient is, from Eq. (2.123):

~"1= [ - ' 0o 0

Substitution of the last results along with the appropriate
expression for Vl, into Eq. (2.128) and collection of equal
powers of y yiel's:

-0

Compatibility with the foregoing derivation (in which y and
(x,t) variable separation was implemented), can be maintained,
provided each of the bracketed terms in Eq. (2.131) vanishes
identically. The resulting four compatibility relations (partial
differential) would determine the behavior of the wall sublaver
system up to the first order in 6 , the small perturhation
quantity. However, a total of four undetermined coefficients (at

.,_ most) shoul 9 arise necessarily, to accommodate coupling with the
outer, inviscid (core) flowfield.
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Of particular interest in the present analysis is the
pressure,

p(y,x,t) = pOt)+ FPl(X,t)

which is a directly measurable quantity. From the axial momentum

balance in perturbed form, cf. Eq. (2.90), it is evident that the
rotational ("inviscid") coreflow can not sustain a first order
term like Zp l/?x herein; the lowest-order axial pressure gradient
effect evolves only at second order, or F P2 level. This is
clearly borne out in the analyses of Culick, ind others, in which
the axial pressure drop is proiortional to Mo (Mach number of
injection, squared), or to F- according to the convention
employed here, cf. Eq. (2.76).

This, however, is not what is observed in the recent injected
cold flow experiments of Brown, et al at CSD/UTC; the measured
axial pressure profiles clearly indicate variation of order Mo 0
or first order.

it therefore seems that the viscous wall layer, with its
inherent first-order dissipative processes, impresses this axial
pressure variation, at first order, over the entire cross section
of the injected channel.

To resolve the axial variation of o1 by the wall layer
formulation, the second compatibility condition in Eq. (2.131)
can be used, corresponding to the y-term:

(2.132)

For the special case of uniform (zeroth order) injection at
steady state, the presence of a nonzero first-order pressure
perturbation would imply physically a corresponding nonzero
perturbation upon the mass flux injected, i.e.,

B0 = Fl(0,x,t) 0

as given by Eq. (2.110). Now at steady state, although Bo is
expected to vary with pI, we have assumed for simplicity that
BO(x) =--B0 = const.

With the foregoing steady state assumptions, Ea. (2.132) is,
for all practical purposes, an ordinary differential equation,
for 04x<L:

(2.133)

p . . .. . . . . . a l . . . . II| .. . . I I R . . .. n n
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where pl(x) is the steady state first-order pressure
perturbation; the coefficients are:

(2.134)

Note that at steady state, according to Eqs. (2.107) and (2.112),
respectively, Co=F o and Cl=FoVo; thus, in Eq. (2.132), Ci-CoVo=0.

The boundary data are,

dpl/dx(0)=O, and pl(x=L)=PL (2.135)

The solution is straightforward,

A

1 ___ (2.137)

This concludes the derivation of the injected, viscous wall
layer, up to second order. Full solutions, namely, matching
between inner and outer expansions will not be attempted herein.
Important insights are obtained already from resolving the near-
field behavior up to second order, in terms of the y-polynominals.
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2.3.3 DISCUSSION OF RESULTS

To facilitate comparison with the experimental data
reported by Brown, et al, one may form the normalized axial
pressure differential,

A I A A

PCST - c b I~ x)I
1.71%(2.138)

This axial pressure differential expression is used to correlate
the experimental data of Brown, et al, as shown in Fig. 4.
Clearly, the measured pressure profile is correlated very well by
Eq. (2.138), which is obviously superior to the expression
attributed to Culick, shown as well.

It should be pointed out that a single point of the data (x;
Sp) has been utilized to obtain a scale for the comparison (this
is necessary, since no physical input is available regardinq the
value of BO , the perturbed injected mass flux, necessary for
defining bl, bo) , along with po=Fo = vO = 1, and -(= 1.4.
Suppose now that K=l, and we select a value of Bo=60. (This is
based on some triaT and error - but shows how the correlation was _
obtained without any regression analysis); then,

bo=l/Bo=l/60, bl=l/ TBo=l/1.4x6O, = 0.012

--bl= 1/ F'B o = 0.014

Two important observations are therfore demonstrated: (1)
axial pressure variation to lowest order is O(E), and is
governed by the dissipative wall layer processes, as shown in the
rigorous analysis herein. The behavior obtained in x differs
from the parabolic pressure drop formula of Culick [i1, and (2)
one need not invoke local turbulence generation or turbulence
encroachment upon the surface to explain the departure of
measured pl from a laminar behavior.

Another property of interest is the wall friction

coefficient, or dimensionless wall shear stress,

where -j* denotes the mean axial coreflow velocity. Using
dimensionless convention employed herein, along with the wall
layer coordinate,

C - 2. (2.139)

I)
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as-u=2x was used, for a cylindrical port, and subscript zero
denotes zeroth order convention.

Now, from EQs. (47) and (77),

(2.140)

where the first square root term is of order unity. This
parameter is plotted against 1/2x (which denotes the ratio of
blowing to mean axial velocity) in Fig. 5. A nearly linear
relationship is obtained, using the foregoing coefficient values.
In comparison, the data obtained by Olson and Eckert [6] is
considered. Ref. 6 includes a plot of the ratio of (axial
pressure qradient)/(mean dynamic axial head) vs v */fo* = 1/2x.
This obtains an almost linear correlation, as would be expected
from a parabolic pressure drop. The slight curvature however,
particularly apparent at small values of 1/2x < 0.01, can be
followed only with the present formulation, not with any
parabolic pressure profile. Thus, the first order pressure
distribution, obtained from the viscous wall layer analysis,
agrees well with the measured data of Brown, et al [8], while the
associated wall friction coefficient follows the same trend as
that measured by Olson and Eckert [6].

2.3.4 CONCLUSIONS

A derivation of the viscous wall layer regime has been
presented, pertaining to the injected flow in an axial porous
tube, in simulation of interior solid propellant rocket flows.

Solutions for the radial coordinate (or y-dependence) of all
the dependent variables up to the second order have been
generated, in Polynominal form. The (x,t)-dependence is defined
in terms of a relatively simple partial differential system.

Particular results of the analysis for the special case of
steady state are: (1) the first order pressure perturbation was
solved for and its axial distribution is given explicitly; this
term is entirely due to the laminar dissipative wall-layer
processes, and (2) the blown wall friction coefficient was
likewise defined. Both results correlate well the available
experimental data. Finally, (3) the zeroth order axial velocity
distribution within the layer is linear radially; thus, to lowest
order, viscous dissipation is negligible in the axial momentum
balance. This indicates why inviscid, rotational solutions (such
as those of Culick [1] and others, chosen so as to satisfy the
no-slip condition at the wall) are so successful in representing
this family of flows - up to first order.

,0
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B HEAD-END
BOUNDARY C INJECTED SIDEWALL
REGIONLAE (VSO )
(VISCOUS)LAE (VSO)

VOLUME (WAVE MOTIONS,A =Ft

COLD FLOW MEAN FLOW)At F )

INJECTION

FIGURE 2.1 SIMULATED (AXISYMMETRIC, NONSTEADY) ROCKET
CHAMBER FLOW, SHOWING THE 3 SPECIFIC REGIONS
OF INTEREST IN THE PRESENT ANALYSIS.
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__ COREFLOW

A CYLINDRICALS POROUS WALL,
S INJECTED

THIN, HEAD-END LAYER
x~

-va

SOLID,* NONPOROUS R
R=O HEAD-END PLANE R=1

FIGURE 2.2 SCHEMATIC OF THE HEAD-END LAYER,
WITH THE STRETCHED AXIAL COORDINATE.
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SOLID VISCOUS
END-WALL WALL LAYER

=0 ~ ~CYLINDRICAL POROUS WALL --

WITH INJECTION
iI

FIGURE 2.3 SCHEMATIC OF THE INJECTED WALL-LAYER REGION
WITH THE PERTURBED (EXPANDED) COORDINATE.
(THE "COREFLOW" REGIME IS ABOVE, TOWARD
THE CENTERLINE.)
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FIGURE 2.4 DIMENSIONLESS FIRST ORDER AXIAL PRESSURE
DISTRIBUTION, FROM THE NEAR-FIELD ANALYSIS
HEREIN. THE CURRENT RESULT IS PIQ1D OVER
THE ORIGINAL FIGURE OF CSD/UTC (_MT WHICH
ALSO SHOWS THE PARABOLIC FORMULA OF CULICK.
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FIGURE 2.5 WALL FRICTION COEFFICIENT, FROM FIRST ORDER
NEAR-FIELD ANALYSIS HEREIN. THE SLIGHT
CURVATURE OCCURS ALSO IN THE EXPERIMENTAL
RESULTS OF OLSON AND ECKERT (196W); ADJUSTMENT

S eWAS NOT ATTEMPTED.
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NOMENCLATURE

At, A = nozzle throat area and port exit area, respectively

a = adiabatic velocity of sound

Cf = wall friction coefficient, Eq. (2.139)

Cv, C = isochoric and isobaric specific heats (J/kq-K)

F = radial mass flux (dimensionless)

G = axial mass flux (dimensionless)

h = thermal enthalpy, dimensionless

Km = ratio of inverse Reynolds number and Mach numbersauared, Ea. (2.30), (2.76)

L = chamber length

M = Mach number

P = pressure

Pr  = Prandtl number, Eq. (2.8)

Ro* = channel radius

Reo = injected Reynolds number, Eq. (2.7)

r = radial coordinate

S1,2, 3  = "source"-terms in the eauations of motion for
coreflow, Eqs. (2.13)-(2.15)

SRO = Strouhal number, injected, (Eq. 2.34)

t = time (dimensionless)

Uo  = parameter defining (x,t) - variation of wall layer
axial velocity component

u, u = axial velocity, and mean axial coreflow velocity
respectively

v = radial velocity component

x = axial distance (dimensionless)

V = radial, magnified wall layer coordinate,
perpendicular to surface, Eq. (2.72)

SY= axial magnified coordinate (head-end boundary
layer), Eq. (2.25)
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Greek Symbols:

= Cp/Cv specific heat ratio

= difference, increment, Eq. (2.138)

=length scales, Eas. (2.31)-(2.34)

= small perturbation quantity, Eqs. (2.24); (2.73)

S= thermal conductivity of gas (air), J/K-m-s

= viscosity coefficient, kg/m-s

= density

Subscripts, Superscripts:

( )o = denotes zeroth order (perturbation)

( )l = denotes first order perturbation

= denotes dimensional quantitv

I

LtI
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3. NUMERICAL SIMULATION

A comprehensive numerical algorithm has been derived an
implemented for simulation of the axisymmetric, nonsteady
internal flow field.

The finite difference method used is a modified MacCormack
explicit algorithm [1, utilizing the original predictor-
corrector scheme. Unlike the original MacCormack algorithm,
which utilizes split time marching 12], the present scheme is
unsplit (namely, both radial and axial space derivatives are
taken into acount at each internal predictor-step, within a
single overall time increment). This affords better stability,
particularly near the walls [3].

The initial spatial discretization scheme is shown in Fig.
3.1. Preliminary versions employed uniform radial mesh size, to
save computation time in marching toward steady state from some
artificial state described by the initial data. Since the time
marching is explicit, the smallest spatial increment must
obviously be used in the Courant-Friedrichs-Lewy condition,

c .t/Rmin < 1

where c=a+Vma x is the dimensionless maximal, local characteristic
slope.

The foregoing drawback due to stability requirements is
marginal compared with the great advantage (at least in terms of
the coreflow region simulation), when compared with implicit
methods which would require much more CPU-core space for setup
and execution.

The algorithm uses the dimensionless equations of motion in
conservation form, as shown in the preceding Section. It is
written in FORTRAN IV and oDerated on a DECK mini computer. A
schematic of the program morphology is given by the block diagram
of Fig. 3.2. A preliminary listing is provided in Appendix A.
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R

Jxx ...
INTERIOR DOMAIN

' '(I IRo EXIT

-_R ~PLANE

.L (TO NOZZLE)
Li

- - -i - l - -X

0 CENTERLINE - CORE AXIS IXX

X =t&X

TYPICAL VALUES: JXX = 10, IXX = 25, RO = 1, L = 25.

IR

i-i, j+. i, j+l i+l, j+l

i-, j i, j ,i+l,j X
j x

L

FIGURE 3.1 COMPUTATIONAL MESH FOR AXISYMMETRIC
-', COREFLOW SIMULATION
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START

INPUT + INIT. DATA
PRGA DDATA:

PROGRAM PRINT INPUT DATA

TIMINT: DGDXB
TIME MARCHING,
MODIFIED
MACCORMACK (SPATIAL DERIVATIVES)

lI '
SOURCE

-PRINTI
OTU, U (t,r,x)

FIGURE 3.2 BLOCK DIAGRAM FOR AXISY METRIC NONSTEADY

COREFLOW SIMULATION CODE
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C INTEGRATION BY MAC CORMACK METHOD

C TWO DItIEJSICNAL SIMULATION IN R-X

I?..J. K)=R-=DENS ITY OF GAS
''_. 7J.K)-RADIAL MOMENTUM-RHOG * RADIAL VELOCITY
": .3.J.K)=f"XIAL MOMENT QM=RHCjG * AAIAL VELOCITY

C i.JKfIMLENTHALPY=RHOG *ENTHALPY

iXtzNUMB1tER OF RADIAL DIVISIONS
4: Ax;'-NQr19ER CF AXIAL DIVISIONS

;A!"A, REyN.C!.flS NUMBIER, PRANDTL NUMBER.. AND MACH NUMBER:
AMA=RATIO CF SPECIFIC HEAT=CPICV

C :E~R ~!ODSNLr-qBER=RHOG VZERO * RSTAR /VISC

:FL.=COJRAN4T*FRIEDRICI*4 i-LEWY '1UrBE'R

C',.OTE: ALL liNtTS TN 3. 1 - m.KS
ZE4Q=REFEF t~i4CE N.,*--C VELOCJ am/SEC

H'R F N tCE GAS !.EN3 -I TY ... ... . . . .$4G',l
' : STAR=MOTOR DIAfMETEk.(1r.,NER) . . . . . . . . . . . .

C rSTARmtl0TOR LENGTH ....... . . .. . . . . .
PSTAR=GAS PPESSURE ... . ..... . . . . . ..N M *
*.ISC=rOEFFICIEt*J .FVSOIT GS. ... KG/M-SEC

C CR-SPECIFIC HEAT OF GAS(ISOPAR) ..... ..... OULE/K-KG
ON -~COEFF IC I ENT C0F TtiERMAL CJNDUCTIVITY OF GAS ...... JOULE/K-M-5E-L*

~i ND-SPEED C= SOUND-(GAMA*PSTR/RHOQ)4**. 5.... .. .. MiSEC

C MAIN PROGRAM

DhiP JNSIOJ U(4. 5, 10..RR(5)
CC~O.tQ/LOCK,GAMA,CG1,DR, DX. JXM1. KXMIMXM1. J:XKXXMXX
CO#'r1O4i3LOCK2/RE0, PRN.. GAMI , C02, CG3, C04, CG5, TODR, TQDX, DR2, DX2. RR
C?O.4w94LOCK3/U. DT

CO;*t1ON/BLOCK4/RSTAR, RO, XSTARI XO.VSTAR, VO, PSTARD P0.RHOG. SSND. EMO

CALL SDATA
DTa.E-5
CALL PDATA
DO 5 L-1 , I TtAX
CAL TIMIIJT(U, TIME, DT)

~....ft :AL.. P'RINT(U. Ti.'lE)

EN 0
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SUBROUTINE TIMINT(U. TIME. DT)

DIM.IrNSION UC4, S 1,L18U(4, So10), DFC45,10),DDOM5, 10). S(4,5.10).
*SB(4,3,1O),RR(5)

COI:riO:/BLOCKI/fGAMA. CGI. DR. DX.JXMI. KXMI. MXM1, JXXD KXX. MXX
CLMOJ/BLOCK2 /REO.PRN, GAM1.CG2. CG3. CG4. CG5. TODR. TODX. DR2. DXZ.RR

C 2-STEP. 2-DIlf'*.b_.SIONAL MAC CORMACK METHOD
CALL VFDR8(U, DF)
CALL D-:*DXB(U.DOG)
CALL SORCE(U.S)
0O 600 fl=1, MXX
DO 6(.0 J=2,JXMI
DO 6CO K=2,KX!It1
UB(M.,J. K)=U(M. J, K,-DT*DF(M, J.K)-DT*DG(M, J, K)+DT*S(M. J.K)
rC014 IN'JE

DO 603 Mr-1.MX,(
DO t)03 K=1.;XX

,X. X, . L.1 (U 11. J X C

Dij so4 ri= 1,mx x
DO 604 J=2,.JXMl
1. 3i t, ., K XX) =I (M J, K XX)

t04 UB i. ", J, 1 ) =UJ(M, J, I)

CALL O4C.RY(U5)

CAl. LFDRF(U8, DF)
C:ALL 0, D(F(LiB, DO)

*1CALL E5JRCE (1.,BB.3B)

DO 60,JK2=.5*U(XKMB(,1K)DT *DF(M. J.K)-DT/2.

*Dlr:iJ, K+DT4 *S(MJ, )+SBMo , K
c r t ,.
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SUBROUTINE SDATA

Ccrn:~.t~LO~1EMACGI, DR. DX, JXMI, KXM1. MXM1. JXX. KXX, MXX
CC,*!f4Ot.'HL0CK2/RE0, PRN. GAMl. C02, CG3, CG4, CG5. TODR, TOOX, DR2. DX2, RR
C CNION / 9 L.CCK 3/J DT
CrirQNBLOCK4/R3 "TAP, .XSTAR. X.,VZEROD VO. PSTAR, P0, RHOG. SSNDU EMO

* CFL
- ROBL.EM DAT4 A?40 BO'J-4EARY VALUES

VZER0 7. 0
RH-0- ,=l 24
VISC1l. E-5
CP-1.14!E3
CON"4=l. ! 6E-2
PSTAR=2.E5

RSTAR-O. 05
XSTAR-0. 25
GAMA- 1. 4
SSNO= (GAMA*PSTAR /RHO ) **0. 5

C DIMEruSICN! ESS CROUP
CFL-0. 8
GAMA-1.4
REO-RHOG*VZERO*RSTAR/VISC
PRN=V ISC*CP/CONo
EMO;VZERO/SSND
Er,02=Etlo*.2

P021.
RO-l.
XO XSTAR/RSTAR

"AtlI 1 SAMA- 1.
GAiP=G-Af 1/GAMA
0Ah.3=I'AMA4*EM02
CQ1 GA!12/(s'AM3
C02-4 '3. /REO
C03:t. /REO
CQ4-GA~A/RE0/pPRN
CG5=G!t'Il*GAM3/RE0

C MESH=5*9

JXIII.JX-

R Xiii =XX -I
MAMl=;lxx-l

DRuR0/.jxmi

TODR-2.*D)R
TODX=2. *DX
DR2-4DR
Dx2-D;(4Dx
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C TIME INCREMENT CALCULATION

C t. THE COQRANT-FRIEDRICHS-LEWY NUMBERnCFL, STATES THAT C*DT/DX .LE. CFL
* C WHERE C-CHARACTERISTIC VELOCITY# AND CFL GQT. 0 AND LE. 1. CFL IS AN INPI

C 2 DT-THE D141ENSIONLESS TIME INCREMENT, ACCORDING TO THE CFL CONDITION.
C INE HAS TO CHCOSE THE SMtALLEST (MIN. OVER KJ) ONE:

C DTXX-CFL*DX/CX
* DTRR=CFL*DR/CR

E,'..(-X0 /RO0
UAX=2 *EIJX

C~JrM.1./EMO

DT:A=::"FL*oX/C X
DTRR-CFL.*DR ICR
DTuAtiIWI4 (DTXX, DTRR)

U120-1.
IJ30 -1
1140 -GAfIA/ (QAMA- 1)

C
DO 701 J-2,JXX

701 RR(J)=DR*CJ-1)

C INITIAL VALUE

C *=
DO 700 K-i KXX
11(1, 1 f)=U10
11(2,t1.K)-0.

U1(4, 1,K)=UI40
C J-JX:

11(1. JXX. 1)iUIO

U (3, :(.K) -0.

700 ccuNTU.E

DO 705 J-2,JXX
UCI. J. 1)-UIO
U(2,J.. I)m0.
U (3,J, ) =0.
11(4, J.1)-U40

1054 1 CC 'U:~E
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C KaKKXX
DO 706 J-2.JXMI
UCI,. ,KXX)inUlO

* U(2,J.KXX)-U20
U(31 J,KIXX)uUI0.2. *DX*KXMI
U(4. J, KXX)-U40

* 706 CONT INUE
C INNER POINTS

DO 710 J-2.JXM1
DO 710 K-2.KXMl
U(1. .J.K)=UIO
U(2 JK)=U20
U(3,J. .%-UIO*2. *DX*(K-1)
U(4. J.K)-U40

710 C * c:TrI J E

RE JRN1
END~

* SUBRcurIrNE PDATA

C"CM"MON/BLOCIIGAMAD CGI, DR. DX.JXM1. KXMI. MI, JXX, KXX. MXX

COMM~t4/DLOCbK2/RE0. PRN. GAll. CQ2. CG3.CG4. COS.TODRI TODX. DR2. DX2. RR
CO~r1Of/9LOCK3/U. DT
cO:ION/BLOCK4/RSTAR. RO. XSTAR. XO. VZERO, VO. PSTARD P0.RHOG. SSND. EMO& 4 DCFL

T I Ml- =0.
CALL PRINT(U. TIME)
WRITE(i. 1000)RSTAR. RO. XSTARD XO. VZERO. VO. PSTAR. P0
WRITE(i. 1005)RHOO. SSND. REO, PRN. EMO,.GAMA. CFL. DR. DX. DT

104)0 FORMAT(1141.SX. 'MOTOR DIAMETER(M)m'.F5. 2. OX. 'RO(DIMENSIONLESS)m',
* F5. 2/9X. 'MOTOR LENOTHCM)-'.F5. 2. 2X. 'XO(DIMENSIONLESS)-'.F5. 2/
* 9X. 'IN-JECTION VELOCITY(M/SEC)-'.F5.2. ' VO(DIMENSIONLESS)-'.F5.2
*/9X. 'GAS PRESSURE(N/M**2i-'.E. 2.3X. 'PO(DIMENSIONLESS?-',F5. 2)

11205 FQRIIAT(9X. 'GAS DENSITY(KO/M**3)-', FS.2/
* 9X. 'SPEED OF SOUND(ll/SEC)-' 1E9.2/
* 9X. 'REO-',E9.2/9X. 'PeR4-'.FS.2/9X, 'EMO'1E.2/9X. 'GAMA-'.F5.2/
* 9X, 'CFL-',FS.2/9X, 'DR-'.F6.3/9X. 'DX-'.F6.3/9X. 'DT-',E9.2)

RET'JR1
E14D
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SUBROUTINE BNDRY(U)

DINaSION U(4, 5, 10)
COMMOCN/DBLOCK I/GAIA. C01. DR# DX, 4,XMls KXMI. MXM1. JXX. KXX. MUX

DO 900 Ml-1, MXX
DO 900 Kin2,KXM1
U filo 1.'K) -U (M, 2. K)

970 a CCOINUiE

DO 905 11-2,3
DO 905 J-l,JXMI
UCII,4. KXX)-UCM. 4.KXM1)

9015 CONTINUE

RETURNI
EtJD

C
SUBROUTINE DFDRB CU.DFB)

C
DIMIENSION (1(4. 5.10), DFB(4. 5.10). F(4. 5.10)
COMMCN/BLOCKI/GAMA. CQ1.DR. DX.JXM1. KXM1.MXMI. JXX.KXX. MXX

Do 100 MI#1MXX
DO 100 J-1,JXM1
DO 100 K-2.KXMl
FC 1.4.K)inU(2 J. K)
F(2.J., K)-UC2. J,K)*U(2, J.K) /U(1, J, K)+CQ1*U(4,4. K)
FC3. 4.K)-U(2.,J. K)*U(3. 4.K)/U(1. ,JK)
F(4. J.K)=GAMA*U(2,J4.K)*U(4,J4.K)/U(1. 4.K)

* 10 0 CCUJI NUE

DO 105 flulmxx
DO 105 J=2,JXMI
DO 105 K-2,KXMl
DFBCM,. , K)i(F(M, 4.K)-FCM. 4-1, K) )/DR

* 10 COWNrIME

RETURN
END1
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C
j.-. SUBROUTINE DQDXS(U. DMD

DIME~NSION U(4, 5, 10) sDG9(4, So10), GC4s,10)
COtIION/BLOCKI/GAMA. COI.DR. DX.JXM1. KXM1. MIiJEXXKXX. MXX

DO 200 ri-i MXX
DO 200 J-2. JXMI
DO 200 K-l.KXMI
0 (1, .J, K) -U (3, J, K)
G0(2# Jo K)-U (2, J, K) *U (3, J. K)U( 1I J. K)-
0(3,J,K)=U3J,K)*U(3,J,K./U(1,J,K)+CG1*.w4,J,K)
10(4. J,K)=OAMA*U(3,J,K)*U(4,J,K)/U(i.J,K)

400 CONI IJE

00 205 fist, MXX
DO 205 Ju2,JXM1
DO 205 K=2,KXI1
DOB (l J, K) (0 (M, J. K) -G(M, J. K-i I/DX

2053 CQJI I NUE

RE1\JPJJ
END

*C
SUBROUJTINE SORCE(U. S)

*c

DII';EW:%SICN U(4* 5, 10), S(4 5, 10), V(3, 5, 10), DVDR(3, 5. 10),
* DVDX(3.5,10),DVDR2(3,5,10).DYDX2(3,5,l0),DU4DR(,10), .

** DU40X 5, 10),DVDRDX2 5, ),RR (5)
CCM1rIN/BLOCK1/GAMA. CGl.DR. DX. JXMl.I(Xtii.MXM1. JXX.KXX, MXX
CO:IMON/BLOCK2/RE0. PRN, OAth. CG.CQ3. CG4 CG5. TODR. TODX, DR2. DX2. RR

* C DEFINE V(rl.J.K)
DO 300 il-iMXMI
DO 300 J-1.JXX
DO 300 K-1,KXX
Vri. J.K)IJ(M+1, J.K)/U( 1.J. K)

300 CONT IfUE

C: DEFINE DVDRI DVDR2, DVDX. DVDX2. DVDRDX. DU4DR. DU4DX
DO 305 Miini M1I
DO 305 J=2,JXMI
DO 305 K=2,KXMI
DVOR (M, J, K4) a(V (M, .J+I. K4)-V(li. J-1i. K) ) /TODR

*DVDX (1JK) a(V('M. J K)-V(M J. K-1),TODX
DVOX2(M, J. K)=((M, .1.K4-1 -2. *V(M,.K)+V(M. J.K-I) )/DX2

L..305 COMJ I NuE
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DO 310 Jm2a JXM1
DO 3M0 Kw2#KXfI

* DVDRDX(2,J,K).(V(2,J.1.K41)-V(,J+IK-1)-V(2.J-l.K.1)4

* V(2,J-1.K-1))/TODR/TODX

OU4DR(J. K)-CU(4 J.1, K)-U(4. J-1. K) )/TODR

DU4DX(J9 K)inCUC4,J, K*1)-U(4, J. K-I)) /TODX
* 310 CONTINUJE

C CALCULATE S(11. J. K)-
DO 315 J-2,JXM1
DO 313 K-2,KXMl
5(1. J.K)--U(2. J.K)/RR(J)

S(2,K)--U(2,JK)*VIC,J,K)/RR(J)+CG2/RR(J)*(DVDR(1.J,K)-
* V(1.JK)/RR(J))+CG3*DVDX2(1,J,K)+CG3*DVDRDX(2.,K)/3.+
* C02*DVtDR2(1,J,K)

S(3-.,)=-U(3,J,K)*V(1,,JK)/RR(J))+CG3/RR(J)*(DVDR(2,J,K)+
* DYIDR(1. JK)/3.)+C03*DVDR2(2. J.K)+CG2*DVDX2(2. J,K)+CG3*
* DVORD:(1,J,K,/3

5(4. J.K)--GAMA.U(4.,J, K)*V( 1. J.K)/RRCJ).QAMI*(V( 1.J. K)*
*4 DU4DR(,J,K)+V(2,J,K)*DU4DX(.J.K))*CG4*(DVDR(3,J,A)

0/RRCJ)+DVDR2(3,J,K)+DVDX2(3J,K))+CG5*(4./3.*(DVDX(2,JK)-

* *42.DVDRc.1J,K4**24+(1,J,A)/RR(J))I*2),DVDR(2,J,K)**2 -

** +DVDX1,JK)*.2&-4.c(1.J.K)/RR(J*DVDR1.JK).V1.JK)/
* RR(J).DVDX(2.J,K).DVDR(1,J,K)4IDVDXC2,JK)))

315 C ON rI tvE

RETURN

END



-54-

SUSPOUTINE DFDRP CU. DF

KMUSION U(4., 5. 0), DFF(4,5, 10), F(4# 5 10W
CUtIIOS/BLOCKI/GAIA.CQI. DR. DX. JXPI.KXfll.MXIJXX. KXX. MX

DO 400 M1-t.MXX
DO 400 Ju2,JXX
DO 400 Kw2.KXMI
FCI. , i K) wU(2. J, K)
F(2. J.K)u'J(2. J.K)*U(2. J.K)/U(l. J.K).CGl*U(4, J.K)
F(3# .Jo K)m'J(2# .J, K) *U(3, J, K) /U( 1. Jo K)
F(4. J, K)m,'AMA*U'2, J, K)*U(4. .J, K) /M( 1 J, K)

400 CON T I NE

DO 405 fl-t, MXX
DO 405 J-2,JXMI
DO 405 Km2.KXMI
DFV(M,J,K)sm(F(M,J+l,K)-F(M.J,K))/DR

405 CONTINU~.E

RETJRtJ
END

SUBROUTINEc DQDXF(U. DOF)

C

DIMENStIN U(4, 5. 10), DOP(4. 5, 10). G(4,.5. 10)
CCPIMON/ BLOCK I/GAIA, C01, DR. DX, JXMI, KXM1l, MXMZ. JXX. KXX, MXX

DO 500 tlul.MXX
DO 500 J-2 JXMI
DO 500 K-2.KXX
G(1.4. K)-U(3. 4.K)
0(2.4. K)-U(2. 4.K)*U(3. 4.K) /UC 1.4.K)
0(3., ,K)U(3. ,K)*tJ(3.,.K)/U( 1.4.K)4CQ1*UC4, 4.K)
0(4. .J. K)-OAMA*U(3. 4. K)*U(4.J4.K)/UC * .,K)

Soo CamfAIt.JE

D0 505 rl-i IKEX
DO 505 4.2. JXMI
DO 505 Kin2,KXMI
D0P (?1 4' K) (o (MI J, K. I -G (M, J, K) )/DX

505 cowrmuE

RETUJRN
ENO
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C
SUBROUTINE PRINT(UnTIME) 

DIi'EtJSIOJ U(4, 5. 10)
COMMON/BLOCKI/GAMA, CG1, DR, DX, JXMI KXMI, MXM1, JXX, KXX, MXX

DO 800 M=I,MXX
IF(M.EO.1) GO TO 801
IF(M. EQ. 2) 0 TO 802
IFM. EQ.3) 00 TO 80 3

C M-4
WRITE (1,840) TIME'
WRITE (1,845)
00 TO 804

C M-3
803 WRITE (1,835) TIME

WRITE (1,845)
O0 TO 804

C M-2
802 WRITE (1,830) TIME

WRITE (1,845)
G0 TO 804

g01 WRITE (1,825) T IME
WRITE (1,845)

804 DO 810 K-1,KXX
IF (K. E. KM) GO TO 805
WRITE (1,815) (U(MJK),J-1,5)
00 TO 810

805 WRITE (1,820) (U(MJ,K),J-1,5)

310 CONTINUE
800 CONTINUE
815 FORMAT (lX,'. ', IX, 5(E14.6)/)
820 FORMAT (lX 'X',X, 5(E14.6)/)
25 FORMAT (IH1, IX, 'U(1,J,K) : GAS DENSITY VS R AND X, ',6X,

* "TIME',EIO.3//)
930 FORMAT (1HI,X, 'U(2,JK) RADIAL MOMENTUM VS R AND X, ',6X,

* 'TIME-',,EIO. 3//)
835 FORMAT (11,lX. 'U(3,J,K) AXIAL MOMENTUM VS R AND X. ',6X,

'TIME-', ElO. 3//)
840 FORMAT (l1,1.X1, 'U(4,J,K) THERMAL ENTHALPY VS R AND X, ',6X,

* 'Tl:IE-', E1O. 3//)
845 FORMAT (1X, "....'............................... R ...............

....................'//)

RETURN

EtJO

ALkr
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